Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 162, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594700

ABSTRACT

To overcome the problems of commercial magnetic resonance imaging (MRI) contrast agents (CAs) (i.e., small molecule Gd chelates), we have proposed a new concept of Gd macrochelates based on the coordination of Gd3+ and macromolecules, e.g., poly(acrylic acid) (PAA). To further decrease the r2/r1 ratio of the reported Gd macrochelates that is an important factor for T1 imaging, in this study, a superior macromolecule hydrolyzed polymaleic anhydride (HPMA) was found to coordinate Gd3+. The synthesis conditions were optimized and the generated Gd-HPMA macrochelate was systematically characterized. The obtained Gd-HPMA29 synthesized in a 100 L of reactor has a r1 value of 16.35 mM-1 s-1 and r2/r1 ratio of 2.05 at 7.0 T, a high Gd yield of 92.7% and a high product weight (1074 g), which demonstrates the feasibility of kilogram scale facile synthesis. After optimization of excipients and sterilization at a high temperature, the obtained Gd-HPMA30 formulation has a pH value of 7.97, osmolality of 691 mOsmol/kg water, density of 1.145 g/mL, and viscosity of 2.2 cP at 20 â„ƒ or 1.8 cP at 37 â„ƒ, which meet all specifications and physicochemical criteria for clinical injections indicating the immense potential for clinical applications.


Subject(s)
Contrast Media , Maleic Anhydrides , Methacrylates , Polymers , Contrast Media/chemistry , Magnetic Resonance Imaging/methods
2.
J Nanobiotechnology ; 22(1): 204, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658948

ABSTRACT

As a famous drug delivery system (DDS), mesoporous organosilica nanoparticles (MON) are degraded slowly in vivo and the degraded components are not useful for cell nutrition or cancer theranostics, and superparamagnetic iron oxide nanoparticles (SPION) are not mesoporous with low drug loading content (DLC). To overcome the problems of MON and SPION, we developed mesoporous SPIONs (MSPIONs) with an average diameter of 70 nm and pore size of 3.9 nm. Sorafenib (SFN) and/or brequinar (BQR) were loaded into the mesopores of MSPION, generating SFN@MSPION, BQR@MSPION and SFN/BQR@MSPION with high DLC of 11.5% (SFN), 10.1% (BQR) and 10.0% (SNF + BQR), demonstrating that our MSPION is a generic DDS. SFN/BQR@MSPION can be used for high performance ferroptosis therapy of tumors because: (1) the released Fe2+/3+ in tumor microenvironment (TME) can produce •OH via Fenton reaction; (2) the released SFN in TME can inhibit the cystine/glutamate reverse transporter, decrease the intracellular glutathione (GSH) and GSH peroxidase 4 levels, and thus enhance reactive oxygen species and lipid peroxide levels; (3) the released BQR in TME can further enhance the intracellular oxidative stress via dihydroorotate dehydrogenase inhibition. The ferroptosis therapeutic mechanism, efficacy and biosafety of MSPION-based DDS were verified on tumor cells and tumor-bearing mice.


Subject(s)
Drug Delivery Systems , Ferroptosis , Magnetic Iron Oxide Nanoparticles , Sorafenib , Ferroptosis/drug effects , Animals , Magnetic Iron Oxide Nanoparticles/chemistry , Mice , Humans , Drug Delivery Systems/methods , Sorafenib/pharmacology , Sorafenib/chemistry , Sorafenib/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Porosity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C
3.
Adv Mater ; : e2313212, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670140

ABSTRACT

Cancer stem cells (CSCs) are one of the determinants of tumor heterogeneity and are characterized by self-renewal, high tumorigenicity, invasiveness, and resistance to various therapies. To overcome the resistance of traditional tumor therapies resulting from CSCs, a strategy of double drug sequential therapy (DDST) for CSC-enriched tumors is proposed in this study and is realized utilizing the developed double-layered hollow mesoporous cuprous oxide nanoparticles (DL-HMCONs). The high drug-loading contents of camptothecin (CPT) and all-trans retinoic acid (ATRA) demonstrate that the DL-HMCON can be used as a generic drug delivery system. ATRA and CPT can be sequentially loaded in and released from CPT3@ATRA3@DL-HMCON@HA. The DDST mechanisms of CPT3@ATRA3@DL-HMCON@HA for CSC-containing tumors are demonstrated as follows: 1) the first release of ATRA from the outer layer induces differentiation from CSCs with high drug resistance to non-CSCs with low drug resistance; 2) the second release of CPT from the inner layer causes apoptosis of non-CSCs; and 3) the third release of Cu+ from DL-HMCON itself triggers the Fenton-like reaction and glutathione depletion, resulting in ferroptosis of non-CSCs. This CPT3@ATRA3@DL-HMCON@HA is verified to possess high DDST efficacy for CSC-enriched tumors with high biosafety.

4.
Adv Mater ; 35(45): e2305932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717205

ABSTRACT

To improve the magnetic resonance imaging (MRI) efficiency and ferroptosis therapy efficacy of exceedingly small magnetic iron oxide nanoparticles (IO, <5 nm) for tumors via enhancing the sensitivity of tumor microenvironment (TME) responsiveness, inspired by molecular logic gates, a self-assembled IO with an AND logic gate function is designed and constructed. Typically, cystamine (CA) is conjugated onto the end of poly(2-methylthio-ethanol methacrylate) (PMEMA) to generate PMEMA-CA. The PMEMA-CA is grafted onto the surface of brequinar (BQR)-loaded IO to form IO-BQR@PMEMA. The self-assembled IO-BQR@PMEMA (SA-IO-BQR@PMEMA) is obtained due to the hydrophobicity of PMEMA. The carbon-sulfur single bond of PMEMA-CA can be oxidized by reactive oxygen species (ROS) in the TME to a thio-oxygen double bond, resulting in the conversion from being hydrophobic to hydrophilic. The disulfide bond of PMEMA-CA can be broken by the glutathione (GSH) in the TME, leading to the shedding of PMEMA from the IO surface. Under the dual actions of ROS and GSH in TME (i.e., AND logic gate), SA-IO-BQR@PMEMA can be disassembled to release IO, Fe2+/3+ , and BQR. In vitro and in vivo results demonstrate the AND logic gate function and mechanism, the high T1 MRI performance and exceptional ferroptosis therapy efficacy for tumors, and the excellent biosafety of SA-IO-BQR@PMEMA.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Glutathione/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Tumor Microenvironment
5.
Biomaterials ; 302: 122300, 2023 11.
Article in English | MEDLINE | ID: mdl-37659110

ABSTRACT

The immunotherapy efficiency of stimulator of interferon genes (STING)-activatable drugs (e.g., 7-ethyl-10-hydroxycamptothecin, SN38) is limited by their non-specificity to tumor cells and the slow excretion of the DNA-containing exosomes from the treated cancer cells. The efficacy of tumor ferroptosis therapy is always limited by the elimination of lipid peroxides (LPO) by the pathways of glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH) and ferroptosis suppressor protein 1(FSP1). To solve these problems, in this study, we developed a STING pathway-activatable contrast agent (i.e., FeGd-HN@TA-Fe2+-SN38 nanoparticles) for magnetic resonance imaging (MRI)-guided tumor immunoferroptosis synergistic therapy. The remarkable in vivo MRI performance of FeGd-HN@TA-Fe2+-SN38 is attributed to its high accumulation at tumor location, the high relaxivities of FeGd-HN core, and the pH-sensitive TA-Fe2+-SN38 layer. The effectiveness and biosafety of the immunoferroptosis synergistic therapy induced by FeGd-HN@TA-Fe2+-SN38 are demonstrated by the in vivo investigations on the 4T1 tumor-bearing mice. The mechanisms of in vivo immunoferroptosis synergistic therapy by FeGd-HN@TA-Fe2+-SN38 are demonstrated by measurements of in vivo ROS, LPO, GPX4 and SLC7A11 levels, the intratumor matured DCs and CD8+ T cells, the protein expresion of STING and IRF-3, and the secretion of IFN-ß and IFN-γ.


Subject(s)
Contrast Media , Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Magnetic Resonance Imaging , Immunotherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Lipid Peroxides , Cell Line, Tumor
6.
ACS Appl Mater Interfaces ; 15(2): 2705-2713, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36622364

ABSTRACT

The upregulation of dihydroorotate dehydrogenase (DHODH) redox systems inside tumor cells provides a powerful shelter against lipid peroxidation (LPO), impeding ferroptosis-induced antitumor responses. To solve this issue, we report a strategy to block redox systems and enhance ferroptotic cancer cell death based on a layered double hydroxide (LDH) nanoplatform (siR/IONs@LDH) co-loaded with ferroptosis agent iron oxide nanoparticles (IONs) and the DHODH inhibitor (siR). siR/IONs@LDH is able to simultaneously release IONs and siR in a pH-responsive manner, efficiently generate toxic reactive oxygen species (ROS) via an Fe2+-mediated Fenton reaction, and synergistically induce cancer cell death upon the acceleration of LPO accumulation. In vivo therapeutic evaluations demonstrate that this nanomedicine has excellent performance for tumor growth inhibition without any detectable side effects. This work thus provides a new insight into nanomaterial-mediated tumor ferroptosis therapy.


Subject(s)
Breast Neoplasms , Ferroptosis , Nanoparticles , Female , Humans , Breast Neoplasms/drug therapy , Cell Line, Tumor , Dihydroorotate Dehydrogenase/antagonists & inhibitors , Nanomedicine/methods , Nanoparticles/therapeutic use , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Magnetic Iron Oxide Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...